1. Palatini P, Dorigatti F, Saladini Fetal. Factors associated with glomerular hyperfiltration in the early stage of hypertension. Am J Hypertens 2012; 25 (9): 1011-1016
2. Hills GS, Heudes D, Jacguort C et al. Morphometric evidence for impaired of renal autoregulation in advanced essential hypertension. Kidney Int 2006; 69 (5): 823-831
3. HelalI, Fick-Brosnohan GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration, definitions, mechanisms and clinical implications. Nat Rev Nephrol 2012; 8 (5): 293-300
4. Сalstrom M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol Rev 2015; 95 (2): 405-511
5. Loutzenhiser R, Griffin K, Willianson J, Bidani A. Renal autoregulation: new perspectives regarding the prospective and regulatory roles of the underlying mechanisms. Am J Physiol Regul 2006; 290 (5): R1153-R1167
6. Friedrich C, Endlich N, Kriz W, Endlich K. Podocytes are sensitive to fluid shear stress in vitro. Am J Physiol Renal Physiol 2006; 291 (4): F856-F865
7. Wang G, Lai F, Ching-Ha Kwan et al. Podocyte loss in human hypertensive nephrosclerosis. Am J Hypertens 2009; 22 (3): 300-306
8. Ruster C, Wolf G. Angiotensin II as a morphogenic cytokine stimulating renal fibrogenesis. J Am Soc Nephrol 2011; 22 (7): 1189-1199
9. Navar LG. Intrarenal renin-angiotensin system in regulation of glomerular function. Curr Opin Nephrol Hypertens 2014;23 (1): 38-45
10. Velez JC, Ierardi JL, Bland AM et al. Enzymatic processing of angiotensin peptides by human glomerular endothelial cells. Am J Physiol Renal Physiol 2012; 302 (12): F1583-F1594
11. Velez JC, Bland AM, Arthur JM et al. Characterization of renin-angiotensin system enzyme activities in cultured mouse podocytes. Am J Physiol Renal Physiol 2007; 293 (2): F398-F407
12. Кузьмин ОБ, Бучнева НВ, Пугаева МО. Почечные гемодинамические механизмы формирования гипертонической нефропатии. Нефрология 2009; 13 (4): 28-36 [Kuzʼmin OB, Buchneva NV, Pugaeva MO. Pochechnye gemodinamicheskie mechanizmy formirovaniya gipertonichezkoj nefropatii. Nefrologiya 2009; 13 (4): 28-36]
13. Liebau MC, Lang D, Bohm J et al. Functional expression of the renin-angiotensin system in human podocytes. Am J Physiol Renal Physiol 2006; 290 (3): F710-F719
14. Harrison-Bernard L, Chappell MC. Introveling the glomerular RAS: one peptidase at a time. Am J Physiol Renal Physiol 2012; 303 (3): F373-F374
15. Da Silveira KD, Pompermauer KS, Lucio RL et al. ACE 2-angiotensin-(1-7)-Mas axis in renal ischemia/reperfusion injury in rats. Clinical Science 2010; 119 (9): 385-394
16. Durvasula RV, Petermann AT, Hiromura K et al. Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney Int 2004; 65 (1): 30-39
17. Durvasula RV, Shankland SJ. The renin-angiotensin system in glomerular podocytes: mediator of glomerulosclerosis and link to hypertensive nephropathy. Curr Hypertens Rep 2006; 8 (2): 132-138
18. Obata J, Nakamura T, Takano H et al. Increased gene expression of components of the renin-angiotensin system in glomeruli of genetically hypertensive rats. J Hypertens 2000; 18 (9): 1247-1255
19. Navar LG, Harrison-Bernard LM, Nishiyama A, Kobori H. Regulation of intrarenal angiotensin II in hypertension. Hypertension 2002; 39 (2): 316-322
20. Hsu HH, Hoffmann S, Endlich N et al. Mechanisms of angiotensin II signaling on cytoskeleton of podocytes. J Mol Med (Berl) 2008; 86 (12): 1379-1394
21. Miceli I, Burt D, Tarabra E et al. Stretch reduces nephrin expression via an angiotensin II-AT(I)-dependent mechanism in human podocytes: effect of rosiglitazone. Am J Physiol Renal Physiol 2010; 298 (2): F381-F390
22. Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol 2015; 26 (2): 258-269
23. Li Y, Kang YS, Dai C et al. Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am J Pathol 2008; 172 (2): 299-308
24. Chen X, Ren Z, Liang W et al. C-Abl mediates angiotensin II-induced apoptosis in podocytes. J Mol Histol 2013; 44 (5): 597-608
25. Zhang C, Xia M, Boini KM et al. Epithelial-to-mesenchymal transition in podocytes mediated by activation of NADPH oxidase in hyperhomocysteinemia. Pflugers Arch 2011; 462 (3): 455-467.
26. Chen S, Meng XF, Zhang C. Role of NADPH oxidasemediated reactive oxygen species in podocyte injury. Biomed Res Int 2013; 839761
27. Abais JM, Zhang C, Xia M et al. NADPH oxidase-mediated triggering of inflammasone activation in mouse podocytes and glomeruli during hyperhomocysteinemia. Antioxid Redox Signal 2013; 18 (13): 1537-1548
28. Liy Y, Hitomi H, Diah S et al. Roles of Na+/H+ exchanger type 1 and intracellular pH in angiotensin II-induced reactive oxygn species generation and podocyte apoptosis. J Pharmacol Sci 2013; 122 (3): 176-183
29. Dessapt C, Baradez MO, Hayward A et al. Mechanical forces and TGF-β1 reduce podocytes adhesion through alpha3beta1 down regulation. Nephrol Dial Transplant 2009; 24 (9): 2645-2655
30. Riser BL, Cortes P, Yee J. Modelling the effects of vascular stress in mesangial cells. Curr Opin Nephrol Hypertens 2000; 9 (1): 43-47
31. Chen G, Chen X, Sukumar A et al. TGF-β receptor I transactivation mediates stretch-induced Pak1 activation and CTGF upregulation in mesangial cells. J Cell Sci 2013; 126 (Pt 16): 3697-3712
32. Zheng B, Peng F, Wu D et al. Caveolin-1 phosphorilation is required for stretch-induced EGFR and Ekt activation in mesangial cells. Cell Signal 2007; 19 (8): 1690-1700
33. Giunti S, Pinach S, Arnoldi L et al. The MCP-1/CCR2 system has direct proinflammatory effects in human mesangial cells. Kidney Int 2006; 69 (5): 856-863
34. Kang YS, Li Y, Dai C et al. Inhibition of integrin-linked kinase blocks podocyte epithelial-mesenchymal transition and ameliorates proteinuria. Kidney Int 2010; 78 (4): 363-373
35. Wang D, Dai C, Li Y, Liu Y. Canonical Wnt/β-catenin signaling mediates transforming growth factor-β1-driven podocyte injury and proteinuria. Kidney Int 2011; 80 (11): 1159-1169
36. Das R, Xu S, Quan X et al. Upregulation of mitochondrial Nox4 mediates TGF-β-induced apoptosis in cultured mouse podocytes. Am J Physiol Renal Physiol 2014; 306 (2): F155-F167
37. Yao M, Wang X, Zhong T et al. The Notch pathway mediates the angiotensin II-induced synthesis of extracellular matrix components in podocytes. Int J Mol Med 2015; 36 (1): 294-300
38. Zhou Y, Poczatek MH, Berecek KH, Murphy-Ullrich JE. Trombospondin 1 mediates angiotensin II induction of TGF-beta activation by cardiac and renal cells under both high and low glucose conditions. Biochem Biophys Res Commun 2006; 339 (2): 633-641
39. Lee HS. Mechanisms and consequences of TGF-β over-39 ISSN 1561_x000F_6274. Нефрология. 2016. Том 20. №4. expression in podocytes in progressive podocyte disease. Cell Tissue Res 2012; 347 (1): 129-140
40. Jiang F, Liu GS, Dusting GJ, Chan EC. NADPH oxidase-dependent redox signaling in the TGF-β-mediated fibrotic responses. Redox Biol 2014; 2: 267-272
41. Галишон П, Гертиг А. Эпителиально-мезенхимальная трансформация как биомаркер почечного фиброза: готовы ли мы применить теоретические знания на практике? Не- фрология 2013; 17 (4): 9-16. [Galishon P, Gertig A. Jepitelialno mezenchimalnaya transformaciya kak biomarker pochechnogo fibroza: gotovy li my primenit teoreticheskie znanija na praktike. Nefrologia 2013; 17 (4): 9-16]
42. Kim MK, Maeng YI, Sung WJ et al. The differential expression of TGF-β1, ILK and Wnt signaling including epithelial to mesenchymal transition in human renal fibrogenesis: an immunohistochemical study. Int J Clin Exp Pathol 2013; 6 (9): 1747-1758
43. Lamouille S, Jian X, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15 (3): 178-196
44. Liu Y. New insights into epithelial- mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 2010; 21 (2): 212-222
45. Herman-Edelstein M, Thomas MC, Thallas-Bonke Vetal. Differentiation of immortalized human podocytes in response to transforming growth factor-β: a model for diabetic podocytopathy. Diabetes 2011; 60 (6): 1779-1788
46. Ito Y, Aten J, Nquyen TQ et al. Involvement of connective tissue growth factor in human and experimental hypertensive nephrosclerosis. Nephron Exp Nephrol 2011; 117 (1): e9-20
47. Huang HC, Liang Y, Cheng LG. Transforming growth factor beta 1 modulates connective tissue growth factor expression via Smad 2 signaling pathway in podocyte in vitro. Zhonqhua Yi Hue Za Zhi 2004; 84 (7): 574-577
48. Fuchshofer R, Ullmann S, Zeilbeck LF et al. Connective tissue growth factor modulates actin cytoskeleton and extracellular matrix synthesis and is induced in podocytes upon injury.
49. Histochem Cell Biol 2011; 136 (3): 301-319
50. May CJ, Saleem M, Welsh GI. Podocyte dedifferentiation: a specialized process for a specialized cell. Front Endocrinol (Lausanne) 2014; 5: 148
51. Wang G, Lai FM, Kwan BC et al. Podocyte loss in human hypertensive nephrosclerosis. Am J Hypertens 2009; 22 (3): 300-306
52. Chen X, Ren Z, Liang W et al. c-Abl mediates angiotensin IIinduced apoptosis in podocytes. J Mol Histol 2013; 44 (5): 597-608
53. Liu Y, Liang W, Yang Q et al. IQGAP1 mediates angiotensin II-induced apoptosis of podocytes via ERK ½ signaling pathway. Am J Nephrol 2013; 38 (5): 430-444
54. Das R, Xu S, Qwan X et al. Upregulation of mitochondrial Nox 4 mediates TGF-β-induced apoptosis in cultured mouse podocytes. Am J Physiol Renal Physiol 2014; 306 (2): F155-F167
55. Das R, Xu S, Nguyen TT et al. Transforming growth factor-β1-induced apoptosis in podocytes via extracellular-signalregulated kinase – mammalian target of Rapamycin complex 1-NADPHoxidase 4 axis. J Biol Chem 2015; 290 (52): 30830-30842.